

Towards a Net-Zero indu in Europe

MATERIAL ECONOMICS

INDUSTRIAL TRANSFORMATION 2050

Pathways to net-zero emissions from EU heavy industry

IN COLLABORATION WITH

European Climate

Foundatio

20

400 Mt OF STEEL, CEMENT, AND CHEMICALS ARE USED EACH YEAR

PRODUCTION, USE AND END OF LIFE VOLUMES MILLION TONNES

84% OF EMISSIONS ARE 'HARD TO ABATE'

BASELINE: CO₂ EMISSIONS REMAIN AT MORE THAN 500 Mt CO₂ PER YEAR

MILLION TONNES CO₂ PER YEAR Including electricity and end-of-life

MATERIAL ECONOMICS

CEMENT

FOUR STRATEGIES FOR NET-ZERO EMISSIONS FROM INDUSTRY

THREE PATHWAYS FOR NET-ZERO EMISSIONS IN 2050

Materials efficiency Recirculation / substitution New processes

Remaining emissions

Carbon capture and storage

MATERIALS EFFICIENCY CAN CUT EMISSIONS BY 31%

$\mathsf{MT}\,\mathsf{CO}_2\,\mathsf{PER}\,\mathsf{YEAR}$

OPTIMISED MATERIALS USE

- Optimised materials use in construction
- Reduced over-use and over-specification
- Precision agriculture reducing fertiliser use
- Optimisation of concrete recipes

REDUCED WASTE

- Reduced scrap formation in manufacturing
- Reduced cement waste through prefabrication

RE-USE

- Remanufacturing
- Reconstruction and re-use of building components

NEW BUSINESS MODELS

- Shared mobility
- Product-as-as-service business models

MATERIALS RECIRCULATION AND SUBSTITUTION CAN CUT EMISSIONS BY 33%

MT CO₂ PER YEAR

NEW PROCESSES AND FEEDSTOCK ENABLE DEEP CUTS TO CO₂

- Hydrogen direct reduction
- Direct smelting ironmaking
- Blast furnace + CCU
- Electrowinning
- Electrification of reheating

- Chemical recycling
- Bio-based plastics
- Electrification of crackers
- New platforms (methanol to olefins)
- Reprocessing of by-products
- Novel bio-polymers
- New catalysts

- Electrification (sintering, calcination)
- Novel binders
- Separation of process CO₂

CCS COULD BE USED ACROSS INDUSTRIAL PRODUCTION (STRETCH SCENARIO)

COST INCREASES BUT WITH LIMITED END-USER IMPACT

COSTS OF MEETING NEEDS INCREASE COMPARED TO BASELINE... BILLION EUR PER YEAR, 2050

...BUT END-USER COSTS INCREASE <1% % INCREASE

THE COST OF PRODUCTION INCREASES FOR ALL MATERIALS

INVESTMENT NEEDS INCREASE BY 76-107% ACROSS THE PATHWAYS

BN EUR PER YEAR

A NET-ZERO TRANSITION REQUIRES A MAJOR CHANGE IN INPUTS

NET-ZERO EMISSIONS REQUIRES AN ADDITIONAL 450-750 TWh ELECTRICITY

TWH PER YEAR

Cement Chemicals Steel

SUMMARY

1. NEW EMERGING SOLUTIONS MAKE NET-ZERO CO_2 POSSIBLE BY 2050

Materials efficiency, materials recirculation, new processes, and CCS all play a role

2. COSTS MUST BE MANAGED

Additional costs to consumers are less than 1%, but companies face 20–115% higher production costs

3. KEY STRATEGIC CHOICES ARE IMMINENT

The transition requires a 25–60% increase in investment, with important near-term decisions

4. NEW INPUTS AND INFRASTRUCTURE WILL BE NEEDED

1-3 EJ materials efficiency | 450-750 TWh electricity | 40-200 Mt CO₂ storage | 1-1.3 EJ biomass,

5. STRONG CLIMATE AND INDUSTRIAL POLICY ARE ESSENTIAL

- 1. Innovation, 2. Lead markets and business case, 3. Investment and transition support
- 4. Materials efficiency, 5. Materials recirculation, 6. Infrastructure

THANK YOU

www.materialeconomics.com/publications/industrial-transformation-2050

Stina Klingvall stina.klingvall@materialeconomics.com

MATERIAL ECONOMICS

Material Economics / Gamla Brogatan 32, 111 20 Stockholm, Sweden / materialeconomics.com